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ABSTRACT: A geometrical confinement considerably affects the diffusive motion of

the nuclei and the consequent signal attenuation under inhomogeneous magnetic fields.

In this article, we illustrate the use of Laplacian eigenfunctions to describe this effect.

Starting from the classical Bloch-Torrey equation, we obtain the free induction decay

(FID) and the spin-echo or gradient-echo signal in a compact matrix form. Each attenua-

tion mechanism (restricted diffusion, gradient dephasing, surface or bulk relaxation) is

represented by a matrix which is constructed from the Laplace operator eigenbasis and

thus depending only on the geometry of the confinement. In turn, the physical parame-

ters (free diffusion coefficient, gradient intensity, surface or bulk relaxivity) characterize

the ‘‘strengths’’ of the underlying attenuation mechanisms and naturally appear as coeffi-

cients in front of these matrices. Once the Laplacian eigenfunctions for a given confine-

ment are found (analytically or numerically), further computation of the macroscopic sig-

nal is more accurate and much faster than by using conventional simulation methods.

The matrix technique is actually a simple numerical tool to deal with arbitrary gradient

waveforms, including simple or stimulated, single or multiple spin echoes. We illustrate

its efficiency by considering restricted diffusion in simple domains: a slab, a cylinder,

and a sphere. In a companion paper, we shall focus on theoretical advances achieved by

using Laplacian eigenfunctions. � 2008 Wiley Periodicals, Inc. Concepts Magn Reson Part A

32A: 277–301, 2008.
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I. INTRODUCTION

In this article, we discuss recent advances in under-

standing restricted diffusion and its role in nuclear

magnetic resonance (NMR). A special focus is on

Laplacian eigenfunctions and their use in theoretical

and numerical studies of diffusive processes. Our aim

is to provide an introduction, as simple as possible, to

the related mathematical and physical concepts which

often appear in modern NMR literature. Whenever

possible, the discussion remains at intuitive level,

with many illustrations and examples. This article is a

pedagogical complementary to the recent review (1)
containing further mathematical details and numerous

references, as well as a historical overview.

The focus on Laplacian eigenfunctions, containing

exhaustive information about restricted diffusion and
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its geometrical confinement, is not accidental. Figu-

ratively speaking, Laplacian eigenfunctions form the

‘‘alphabet’’ of the proper mathematical language

describing restricted diffusion. Instead of searching

for one particular solution of a diffusion problem,

one aims to get all the solutions at once. Of course,

this is a more difficult task, but this task has to be

solved only once for a given confinement. When this

preliminary step is accomplished, further analysis

(e.g., the computation of the spin-echo signal) is

more accurate and much faster than by using conven-

tional simulation methods. This ‘‘spectral’’ point of

view is probably not shared by many NMR practi-

tioners who are more familiar with averaged propa-

gator and the related q-analysis. In fact, after a brief

glance through the article, the presented matrix

approach may appear as a sophisticated abstract for-

malism. The author’s ambition is to convince the

reader that the spectral mathematics beyond the clas-

sical Fourier transform of the averaged propagator is

as easy and is actually more efficient in many

aspects.

The content is split in two parts which are devoted

respectively to numerical and theoretical issues. In

the next section, we start with a reminder of the basic

facts on restricted diffusion. In particular, the notion

of Laplacian eigenfunctions is illustrated by many

examples. In Section III, we provide a mathematical

basis for an efficient numerical tool by deriving sim-

ple matrix expressions for the macroscopic signal.

The signal is determined by three governing matrices

L, B, and ~Bs, representing the evolution of the mag-

netization due to diffusion, gradient dephasing, and

surface relaxation, respectively. In Section IV, we

explain the implementation of this numerical tool for

simple domains: a slab, a cylinder, and a sphere. In a

companion paper (2), we shall focus on theoretical

advances which could be achieved by using Lapla-

cian eigenfunctions.

The splitting in two parts gives us an opportunity

to present the concepts of restricted diffusion from

two alternative points of view. In the first part, we

adopt the ‘‘macroscopic’’ deterministic approach

based on the Bloch-Torrey equation describing the

evolution of the magnetization. This quantity already

represents the contribution of a large number of dif-

fusing particles so that all the randomness is aver-

aged out. In a companion paper, we shall employ the

‘‘microscopic’’ probabilistic description through the

reflected Brownian motion (3). In this case, one stud-

ies individual random trajectories of the diffusing

particles and the related dephasing in a magnetic

field. The macroscopic characteristics such as the

moments of the dephasing are then determined by

averaging. Although these two descriptions are

equivalent, the first one is appropriate for numerical

computation (simple expressions for the signal),

while the second one is natural for theoretical analy-

sis. These two insights on restricted diffusion are

complementary and helpful.

II. BASIC FACTS ON DIFFUSION

In this section, we remind the basic facts about diffu-

sion: schematic ‘‘derivation’’ of diffusion (or heat)

equation and introduction of the diffusive propagator

(Section ‘‘Diffusion Equation’’); discussion of bound-

ary conditions (Section ‘‘Boundary Condition’’);

magnetic encoding and Bloch-Torrey equation (Sec-

tion ‘‘Magnetic Field Encoding’’); eigenfunctions and

eigenvalues of the Laplace operator (Section ‘‘Notion

of Eigenfunction’’). The familiar reader can skip this

section.

Diffusion Equation

Diffusion is a fundamental transport mechanism,

with countless examples in nature and applications in

sciences, from physics to biology, chemistry, engi-

neering, and economics. Although the microscopic

dynamics of atoms, molecules, or other species with

short-range interactions may be defiantly complex,

its coarser description via diffusion equation at mac-

roscopic time and length scales is often appropriate

and very accurate. At these scales, a small macro-

scopic volume around each bulk point r contains a

large number of particles, allowing one to introduce

a density c(r,t). The specific motional features of the

complex microscopic dynamics are averaged out,

and the time evolution of the macroscopic density is

governed by a diffusion equation.

Phenomenological Derivation. If no particle is

created or destroyed in the bulk, the time evolution

of the density of particles c(r,t) is described by the

continuity equation

qcðr; tÞ
qt

þrjðr; tÞ ¼ 0:

The second term, the divergence of the flux den-

sity j(r,t), is the scalar product between gradient op-

erator r and the vector jðr; tÞ ¼ ðj1ðr; tÞ; . . . ;
jdðr; tÞÞ:

rjðr; tÞ ¼ q
qx1

j1ðr; tÞ þ � � � þ q
qxd

jdðr; tÞ;
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d being the dimension of space, and q=qxk the deriva-
tive with respect to the kth spatial coordinate. This

term describes inflow and outflow of particles into

and out of a vicinity of a bulk point r at time t. In
other words, the continuity equation states that the

density c(r,t) evolves in time only because of the par-

ticles coming to and leaving the point r. This is a

general relation.

On the other hand, the particles diffuse to dimin-

ish the gradient of their density c(r,t). This tendency
is mathematically represented by the phenomenologi-

cal Fick’s law

jðr; tÞ ¼ �Drcðr; tÞ: [1]

Throughout the paper, the free diffusion coeffi-

cient D is assumed to be constant (no dependence on

time and spatial coordinates). Substituting j(r,t) into
the continuity equation, one gets the diffusion (or

heat) equation

q
qt
cðr; tÞ � DDcðr; tÞ ¼ 0; [2]

where D ¼ r2 ¼ q2=qx21 þ � � � þ q2=qx2d is the Lap-

lace operator.

Local Dynamics. The above phenomenological

‘‘derivation’’ can be replaced by more subtle analysis

of the local dynamics. During a short time t, particles
travel on average a typical distance s. While the par-

ticles from a point r move away, the particles from

neighboring points come to r. This migration is

intended to level off the gradient of the density c(r,t).
To illustrate the idea, we simplify the picture by

allowing the particles to move only along 2d prefer-

ential directions in space. In other words, we con-

sider the migration between the point r and its 2d
neighbors ri at distance s. If the motion is isotropic,

each particle from each neighboring site can move to

r with probability ð2dÞ�1
. The density of particles at

r at time tþ t is then constituted of all the particles

coming to r:

cðr; tþ tÞ ¼ 1

2d

X2d
i¼1

cðri; tÞ:

Subtracting c(r,t) and dividing by t yield

cðr; tþ tÞ � cðr; tÞ
t|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

qcðr;tÞ=qt

¼ s2

2dt|{z}
D

X2d
i¼1

cðri; tÞ � cðr; tÞ
s2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Dcðr;tÞ

: [3]

In the limit of vanishing t and s2, the left-hand

side becomes the time derivative of the density,

while the sum approximates the Laplace operator act-

ing on c(r,t). The ratio between two microscopic

transport parameters s2 and t is the free diffusion

coefficient D. Although the above ‘‘derivation’’ of

diffusion equation is simplified, the result is very

general. For instance, one could easily avoid the

introduction of ‘‘preferential directions’’ by consider-

ing the particles coming from a sphere of radius s
around r. At first thought it may sound paradoxical

to speak simultaneously about random diffusive

motion and deterministic diffusion equation. It is

worth noting that, although each individual trajectory

of the diffusing particle is random, the density is a

macroscopic quantity obtained by averaging over a

large number of particles.

The local character of the microscopic dynamics

is a crucial assumption for deriving the diffusion

equation. If very large moves were allowed during a

short time, the density cðr; tþ tÞ would be consti-

tuted of particles coming from neighboring and dis-
tant regions. In this case, the sum in Eq. [3] would

include distant points and converge to an integral

over the bulk. This would be a spatially nonlocal

macroscopic dynamics. On the other hand, if the mi-

croscopic moves were highly correlated, the density

at time tþ t would depend not only on the previous

moment t, but on the whole preceding evolution. In

this case, one would deal with a temporarily nonlocal

macroscopic dynamics. Although both situations are

often encountered in practice, we do not consider

such anomalous diffusions in this paper [see (4–9)
and references therein].

Diffusive Propagator. The diffusion equation [2]

describes the evolution of the density from an initial

state. Specifying the initial density of particles rðr0Þ
at time t ¼ 0, one fixes the solution of Eq. [2] and

the whole evolution of the system. Among various

initial conditions, a point-like source plays a special

role. In fact, it is natural to ask how does the density

of particles started from a given point r0 evolve?

Throughout this paper, Gtðr0; rÞ denotes the family

of these densities, parametrized by the starting point

r0, that satisfy Eq. [2] with respect to the arrival

point r. The initial condition for all particles concen-

trated in one point r0 is mathematically represented

by the Dirac distribution:

Gt¼0ðr0; rÞ ¼ dðr� r0Þ: [4]

As it will be shown later, the function Gtðr0; rÞ is
symmetric with respect to interchange of r0 and r:
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Gtðr0; rÞ ¼ Gtðr; r0Þ: [5]

Depending on the application field, the solution

Gtðr0; rÞ of Eqs. [2] and [4] bears different names:

diffusive propagator, heat kernel, or Green function

of diffusion equation. This is an elementary ‘‘block’’

describing the dynamics of particles at macroscopic

level. As such, the propagator contains all available

information about diffusion. In particular, a solution

cðr; tÞ of the diffusion equation [2] with a given ini-

tial density rðr0Þ is simply expressed through the

propagator:

cðr; tÞ ¼
Z

dr0rðr0ÞGtðr0; rÞ

(the integral here is over the whole space). This for-

mula gives two complementary insights on the propa-

gator. From the physical point of view, the initial

density rðr0Þ describes a collection of independent

point-like sources of particles distributed in space at

time t ¼ 0. Each of them evolves in time, independ-

ently of the others, with the propagator Gtðr0; rÞ for

the particles started at r0. The density cðr; tÞ is then a

linear superposition (represented here by the integral)

of the resulting densities rðr0ÞGtðr0; rÞ for each point

r0. From the probabilistic point of view, one can

think of a single particle whose initial location in

space is random, with a given probability density

rðr0Þ (normalized to 1). In this language, the starting

point is chosen at time t ¼ 0 with probability

rðr0Þdr0, and then the particle diffuses up to time t,
the integral averaging over all starting points r0. The
solution cðr; tÞ is then the probability density to find

this particle at time t (10).

Example: Gaussian Propagator. The diffusive

propagator for the whole space has a simple analyti-

cal form

Gspace
t ðr0; rÞ ¼

�
4pDt

��d=2
exp

�ðr� r0Þ2
4Dt

" #
: [6]

It is easy to check that this function satisfies the

diffusion equation [2]. When t goes to 0, the density

Gspace
t ðr0; rÞ vanishes for r 6¼ r0 (particles have no

enough time to diffuse from r0 to r), and diverges

for r ¼ r0 (particles remain concentrated in an infin-

itely small volume). In fact, Gspace
t ðr0; rÞ approaches

the Dirac distribution and thus satisfies the initial

condition [4]. The explicit form of the diffusive prop-

agator in the whole space substantially simplifies the

theoretical analysis of Brownian dynamics. In partic-

ular, diffusion in heterogeneous porous media was

often investigated by effective approaches based on

Eq. [6]. Though successful in some aspects, these

approaches lack accurate accounting for geometrical

features of the confining medium.

Boundary Condition

When the motion of diffusing particles is restricted

by a geometrical confinement (Fig. 1), the micro-

scopic interaction between the particles and the

boundary should be taken into account. These inter-

actions may have different physicochemical or bio-

logical mechanisms. For instance, paramagnetic

impurities dispersed on the boundary cause surface

relaxation in NMR experiments; cellular membranes

allow for a permeable transport through the bound-

ary; chemical reaction may change the diffusive or

magnetic properties of the particle, etc. A realistic

description of these processes at the microscopic

level is a challenging problem, demanding for exam-

ple accurate molecular dynamics simulations near the

interface, or quantum mechanics calculations. At the

time scale of the macroscopic transport process, how-

ever, the contact with the interface is very rapid so

that the precise description of the interaction is often

irrelevant. In analogy with the diffusion coefficient

D, effectively representing the bulk dynamics, the

interactions on the boundary can macroscopically be

described by a surface transport coefficient K (11,
12). In biology, this is the permeability characteriz-

ing the rate of transfer across a permeable membrane.

In heterogeneous catalysis, K is the reactivity of a

catalyst, that is the rate at which diffusing species

are chemically transformed into other species after

Figure 1 A solid matrix (shaded region) delimits the

confining domain V which is filled with a liquid or a gas

containing spin-bearing particles (white region). In the

bulk, the flux density jðr; tÞ, determining the evolution

of the density cðr; tÞ, is proportional to its gradient

(Fick’s law), yielding the diffusion equation. In

turn, the flux of particles from the bulk toward the

boundary qO, ðn � jÞ, is equal to the flux of particles

through the boundary, Kc, yielding the Robin

boundary condition.
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hitting the boundary. In NMR, K is the surface relax-

ivity determining the rate at which the nuclei lose

their transverse magnetization in the vicinity of the

boundary. In the two latter cases, the transformed or

relaxed species still remain in the confinement but

they do not participate in the transport process any

more (e.g., they do not contribute to the formation of

the spin-echo signal).

At macroscopic level, the boundary condition is a

kind of mass conservation law. The flux of particles

from the bulk toward the boundary is obtained by

projecting the flux density j from Eq. [1] onto the

unit normal vector nðrÞ at the boundary. On the other

hand, the flux through the boundary (or the flux of

transformed or relaxed species) is the product of the

density of particles at the boundary and the surface

transport coefficient K. Equating these two fluxes

yields the Robin (also known as Fourier, mixed,

relaxing, radiation, or third) boundary condition for

the density at the boundary qO:

D
q
qn

cðr; tÞ þ Kcðr; tÞ ¼ 0 ðr 2 qOÞ;

where q=qn is the normal derivative [the projection

of the gradient operator ! onto the unit vector nðrÞ],
pointing towards the exterior of the region (Fig. 1).

In other words, the normal derivative shows the vari-

ation of a function in the spatial direction which is

orthogonal to the boundary. For instance, when the

boundary is a sphere, q=qn reduces to q=qr in radial

coordinate. When the surface transport coefficient K
is zero (no flux through the boundary), one retrieves

the Neumann boundary condition: qcðr; tÞ=qn ¼ 0 at

r 2 qO. The opposite limit of infinite K (no resist-

ance to the transfer through the boundary) corre-

sponds to the Dirichlet boundary condition:

cðr; tÞ ¼ 0 at r 2 qO. The intermediate Robin bound-

ary condition is then a linear combination of these

two extreme cases, which are ‘‘weighted’’ by bulk

and surface transport coefficients D and K.
Similar boundary condition can be written for the

propagator

D
q
qn

Gtðr0; rÞ þ KGtðr0; rÞ ¼ 0 ðr 2 qOÞ: [7]

Because the propagator represents a ‘‘family’’ of

functions parametrized by the starting point r0, the
above boundary condition should be satisfied for any

r0. It is important to stress that the presence of

boundary substantially modifies the solution of the

diffusion equation [2]. In particular, the Gaussian

propagator from Eq. [6] for the whole space does not

satisfy the above boundary condition for a bounded

domain. In other words, each confining domain has

its own diffusive propagator which also depends on

the transport parameters D and K.
The surface relaxivity K is assumed to be uniform

over the boundary. This assumption is very common

in the literature, by mainly three reasons:

� the real distribution of the surface relaxivity is

unknown and practically inaccessible in most

experiments;

� the implementation of a given distribution was

considered as a significant additional compli-

cation of the problem;

� for long enough observation time, diffusion is

expected to average out such inhomogeneities.

In Section ‘‘Relaxation Mechanisms’’, we shall

explain how a given distribution of the surface relax-

ivity can be easily implemented in the matrix tech-

nique.

Magnetic Field Encoding

An observation of the dynamics requires a kind of

‘‘marking’’ or ‘‘labeling’’ of the traveling particles in

order to trace their displacements in the confinement.

Magnetic field is a superb experimental tool for

encoding the motion of spin-bearing particles (13).
Once the magnetization is flipped into the transverse

plane by a 908 radio-frequency (rf) pulse, the spins at

position r precess with the Larmor frequency gBðr; tÞ
which is proportional to the magnetic field Bðr; tÞ, g
being the gyromagnetic ratio (a fundamental constant

of the nucleus). The use of a spatially inhomogene-

ous magnetic field allows one to distinguish different

points or regions in the bulk. This mechanism has

been broadly applied in experiments to monitor the

dynamics and to access the geometry of a confining

medium.

Bloch-Torrey Equation. In 1956, Torrey modified

the Bloch equation describing the evolution of the

complex-valued transverse magnetization mðr; tÞ to

include the effect of diffusion (14):

q
qt
mðr; tÞ ¼ DDmðr; tÞ � igBðr; tÞmðr; tÞ:

evolution : due to diffusion due to encoding

[8]

On the other hand, this Bloch-Torrey equation can

also be considered as a diffusion equation, to which

the effect of magnetic field encoding has been

added. This equation states that the evolution of
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magnetization during a short time t is caused by two

independent mechanisms:

� diffusive migration of the spin-bearing particles

(from r to neighboring points), represented by

the Laplace operator and characterized by the

diffusion coefficientD;
� magnetic field encoding, when the spins at r

acquire the phase shift gBðr; tÞt resulting from

their precession.

The macroscopic signal at time t is formed by the

whole ensemble of the spins:

E ¼
Z

drmðr; tÞ ~rðrÞ; [9]

where ~rðrÞ is a sampling or pickup function of the

measuring coil or antenna. Usually one tries to

design antenna to get ~rðrÞ as uniform as possible.

Applied Magnetic Field. In most practical situa-

tions, the encoding term Bðr; tÞ is a superposition

B0 þ f ðtÞðg � rÞ of a static magnetic field B0 and a lin-

ear magnetic field gradient g, whose dependence on

time is represented through a dimensionless temporal

profile f ðtÞ. The constant term �igB0mðr; tÞ in Eq.

[8] can then be dropped out because it leads to an

explicit factor exp½�igB0t�. In turn, the inhomogene-

ous time-dependent gradient is responsible for highly

nontrivial behavior, with crucial consequences both

from physical and mathematical points of view.

The form of the temporal profile can be easily var-

ied in modern MR scanners. The simplest choice

f ðtÞ ¼ 1 corresponds to a free induction decay (FID)

in a constant gradient. In turn, two identical gradient

pulses of opposite polarities [Fig. 2(a)] can be

applied to form a gradient echo. If the nuclei were

immobile, their dephasing by the first gradient pulse

would be fully compensated by the second gradient

pulse. When the nuclei diffuse, the rephasing is not

complete, and the gradient-echo amplitude attenua-

tion can be used to characterize restricted diffusion.

The dephasing/rephasing mechanism is similar to

how a droplet of a colored liquid spreads in a laminar

flow and then (partially) recovers its shape when the

flow is reversed. In fact, each molecule moves along

a streamline with a constant velocity which depends

on its initial position. If the molecules remained on

the initial streamlines, they would return to their ini-

tial positions when the flow is reversed. In practice,

the recovered droplet shape is ‘‘blurred’’ or even fully

destroyed by diffusion in the transverse plane (per-

pendicular to the flow direction) which allows the

molecules to jump randomly between streamlines.

For spin-echo experiments, the gradient pulses

have the same polarity, while the (partial) rephasing

is realized by inverting the magnetization with a

refocusing 1808 rf pulse (13). Although the physical

mechanism is different, the inversion by the 1808 rf

pulse can be effectively taken into account by the

same temporal profile f(t) with opposite gradient

polarities. In other words, we do not distinguish gra-

dient and spin echoes when studying restricted diffu-

sion. Similarly, the Carr-Purcell-Meiboom-Gill

(CPMG) and stimulated spin-echo sequences can be

handled with an appropriate choice of f(t) (15).

Boundary Condition. Although Eq. [8] was origi-

nally deduced for the whole space, it can be readily

applied to describe restricted diffusion by specifying

the boundary condition.

Figure 2 (a) Typical form of the temporal profile f ðtÞ.
After the exciting 908 rf pulse, the nuclei are

dephased and rephased by two gradient pulses of

opposite polarities. Their trapezoidal shape is char-

acterized by the ramp time d0, plateau duration d,
and diffusion time D. A gradient echo is formed at

the echo time T ¼ Dþ dþ 2d0. The same profile

f ðtÞ can also describe a spin-echo formation, when

the opposite polarity of the second gradient pulse

effectively accounts for the magnetization inversion

by the 1808 rf pulse. (b) A piecewise constant

approximation of the above temporal profile. The

choice of the time step t is a compromise between

the accuracy of the piecewise constant approxima-

tion (smaller t, better the accuracy) and the compu-

tational time (smaller t, longer the computation).
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As in Section ‘‘Boundary Condition’’, the Robin

boundary condition is often imposed

D
q
qn

mðr; tÞ þ Kmðr; tÞ ¼ 0: [10]

While Eq. [8] governs the dynamics of spins in the

bulk, the boundary condition tells what happens

when the spin-bearing particle encounters the inter-

face.

Length Scales and Dimensionless Parameters.
The aforementioned mechanisms (diffusion and en-

coding) for the magnetization evolution, diffusion

and encoding, provide us with two important length

scales: the diffusion length
ffiffiffiffiffiffiffi
DT

p
showing how far

the nuclei diffuse on average until the echo time T;
and the gradient length ðggTÞ�1

, over which the mag-

netic field gradient g yields a phase spread of the

order of 2p. When there is no boundary (unrestricted

diffusion in the whole space), these are the only two

scales of the problem. Because the signal attenuation

is a dimensionless factor, the diffusion and gradient

lengths necessarily enter as a ratio
ffiffiffiffiffiffiffi
DT

p
ggT which is

the only relevant parameter. Of course, this ratio can

be multiplied by a number or, in general, one can use

any nontrivial function of it as a new dimensionless

variable. In particular, the square of this ratio over D,
g2g2T3, is known, up to a numerical factor, as b-
value. The dimensionless combination Dg2g2T3

determines the way in which different physical pa-

rameters should be rescaled to get the same signal. In

other words, the signal attenuation that would be

deduced from an appropriate mathematical frame-

work must be a function of this single parameter. In

turn, finding the particular form of this function

would require further analysis. For instance, the spin-

echo signal in a constant gradient is (16, 17):

E / exp½�Dg2g2T3=12�: [11]

For restricted diffusion, a new dimensional param-

eter, the size L of the confining medium, should be

introduced, leading to two dimensionless combina-

tions which we denote as

p ¼ DT=L2 and q ¼ ggLT: [12]

It is worth noting that this choice of the dimen-

sionless variables is conventional. For instance, one

could alternatively take the previous combination

Dg2g2T3 instead of p or q or, in general, any two in-

dependent nontrivial functions of p and q. Once a

convenient pair of the two dimensionless variables is

chosen, it should be kept through all the computation.

We bring the attention to the distinction between the

above dimensionless gradient intensity q and the

dimensional combination ggd=2p from the classical

q-analysis with narrow gradient pulses of duration d.
The former q value is defined for any temporal pro-

file and can thus be considered as an extension of the

latter (classical) q value.

Even at a qualitative level, it is clear that the exis-

tence of two independent parameters for restricted

diffusion drastically complicates the problem, allow-

ing for various regimes of the signal attenuation. In

particular, the classical form [11] of the signal does

not necessarily hold, as illustrated later.

Another attenuation mechanism would introduce a

new length scale and a new dimensionless variable.

For instance, surface relaxation which can be intro-

duced via Eq. [10] brings the relaxation length D/K
which is the distance a particle should travel near the

boundary before surface relaxation effects reduce its

expected magnetization. The relaxation length is also

called ‘‘unscreened perimeter length’’ and it plays an

important role in diffusive transport phenomena (10,
11, 18–24). The third dimensionless variable

h ¼ KL

D

further extends the diversity and complexity of diffu-

sive NMR phenomena.

Conventions and Ambiguities. Although the above

dimensional analysis correctly illustrates the con-

cepts, it tells only half of the story. In practice, other

‘‘ingredients’’ (beside the physical parameters) have

to be included to get a quantitative description. These

are: the temporal and spatial profiles of the applied

magnetic field; and the geometry of the confining

medium. For sake of simplicity, we shall consider

only a linear magnetic field gradient [other spatial

profiles can also be implemented, see (1)].
The signal attenuation depends on the choice of

the temporal profile f(t). In a typical gradient-echo or

spin-echo experiment, the gradient pulses have a

trapezoidal shape which is characterized by the ramp

time d0, plateau duration d, and diffusion time D [Fig.

2(a)]. The following question naturally arises: which

time characteristic of the temporal profile should be

used as the time scale T? Is it the plateau duration d
or some effective duration of one dephasing pulse?

Or the diffusion time D? Or the accumulated duration

of both pulses when the gradient is on? Or the whole

duration of the temporal profile, including the wait-
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ing time between two pulses? Or the echo time?

There may be various speculations about which time

characteristics would be physically more relevant,

but they are pointless. In fact, the signal attenuation

is determined by both the whole temporal profile f(t)
and its timing characteristics, and not by our particu-

lar preference for the time scale. Once the time scale

is conveniently chosen, it is important to use it coher-

ently throughout the whole computation. In what fol-

lows, we always take T to be the echo time.

A similar freedom of choice (and a possible ambi-

guity) occurs for the characteristic length scale L of

the confining domain. For diffusion between two par-

allel planes, choosing for L the separation width is

rather natural. However, should L be the diameter or

the radius for a sphere? The same question becomes

challenging for heterogeneous porous media when

multiple length scales are present: Should L be the

smallest pore scale or the largest sample size? Should

it be a kind of an average length (such as, for exam-

ple, the ratio between the volume and the surface

area)? Again, there is no definite answer to this ques-

tion of conventional matter. The restricted diffusion

and the consequent signal attenuation depend on the

whole geometry of the confining medium, and the

characteristic length L is only used to get dimension-

less variables. As shown below, the signal attenua-

tion is determined by the matrices L, B, and ~Bs rep-

resenting the geometry. These matrices have to be

calculated, analytically or numerically, for a confin-

ing medium of a fixed (unit) size. A dilatation of this

medium is then represented by the length scale L. In
practice, the choice of the length L is therefore set by

the formulas used for the governing matrices. For

instance, the formulas in Table 1 are derived under

the convention that L is the separation width for a

slab and the radius for a cylinder and a sphere.

To summarize this discussion, we stress again that

the choice of the dimensionless combinations p, q,
and h of physical parameters is conventional, but it

should be coherent throughout the whole computa-

tion. In addition to physical parameters, the confining

geometry and the applied magnetic field come into

the description. In particular, two measurements with

the same values of p, q, and h but in different geome-

tries would lead to different results.

Notion of Eigenfunction

The notion of eigenfunction is as simple as funda-

mental. In the next subsections, we first illustrate this

notion for 2 � 2 matrices and then focus on the Lap-

lace operator.

Illustration with 2 � 2 Matrices. We start by con-

sidering a vector v ¼ x1
x2

� �
in the plane and its lin-

Table 1 Mathematical Basis for Computing
the Governing Matrices L, B, and ~Bs

for Three
Confining Domains: Interval, Disk, and Sphere

[More General Formulas for Robin Boundary
Condition Are Given in (1)]

1D: Interval/Slab,

O ¼ f x 2 R : 0 < x < 1g ðV ¼ 1Þ
sinðamÞ ¼ 0 ) am ¼ pm

�m ¼ p2m2 �m;m0 ¼ dm;m0�m

umðxÞ ¼ em cosðpmxÞ
em ¼ ð2� dm;0Þ1=2
~Bs

m;m0 ¼ emem0 ð1þ ð�1Þmþm0 Þ
Bm;m0 ¼ ðð�1Þmþm0 � 1Þemem0

�m þ �m0

ð�m � �m0 Þ2; Bm;m ¼ 1
2

2D: Disk/Cylinder, O ¼ f r 2 R2 : jrj < 1g ðV ¼ pÞ
J0nðankÞ ¼ 0

�nk ¼ a2
nk �nk;n0k0 ¼ dn;n0dk;k0�nk

unkðr;jÞ ¼ enffiffiffi
p

p bnk
JnðankÞ JnðankrÞ cosðnjÞ

bnk ¼
�nk

�nk � n2

� �1=2

b00 ¼ 1

~Bs

nk;n0k0 ¼ 2dn;n0bnkbn0k0

Bnk;n0k0 ¼ dn;n061 ð1þ dn;0 þ dn0;0Þ1=2

� bnkbn0k0
�nk þ �n0k0 � 2nn0

ð�nk � �n0k0 Þ2

3D: Sphere, O ¼ f r 2 R3 : jrj < 1g ðV ¼ 4p=3Þ
j0nðankÞ ¼ 0

�nk ¼ a2
nk �nk;n0k0 ¼ dn;n0dk;k0�nk

unkðr; yÞ ¼ bnkffiffiffiffiffiffi
2p

p
jnðankÞ

jnðankrÞ Pnðcos yÞ

bnk ¼
ð2nþ 1Þ �nk

�nk � nðnþ 1Þ
� �1=2

b00 ¼
ffiffiffiffiffiffiffiffi
3=2

p
~Bs

nk;n0k0 ¼ 2dn;n0
bnkbn0k0
2nþ 1

Bnk;n0k0 ¼ dn;n061

ðnþ n0 þ 1Þ
ð2nþ 1Þ ð2n0 þ 1Þ bnk bn0k0�

�nk þ �n0k0 � nðn0 þ 1Þ � n0ðnþ 1Þ þ 1

ð�nk � �n0k0 Þ2

For each domain, we specify line by line: the equation for am

(or ank), the eigenvalues, the eigenfunctions, the normalization

constants, and the matrices ~Bs
and B.
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ear transformations by 2 � 2 matrices. For instance,

the application of the matrix
2 0

0 1=2

� �
to v extends

the first coordinate and shrinks the second one by

factor 2. This geometric interpretation in terms of

dilatations is clear since the diagonal structure of the

matrix yields a separate action on both coordinates.

When the matrix is not diagonal, its action is less

obvious because the coordinates will be mixed. The

spectral analysis is intended to get a clearer interpre-

tation by diagonalizing the matrix. For example,

what is a ‘‘geometric action’’ of the matrix

A ¼ 3=4 1=4
1=4 3=4

� �
? Can this action be interpreted in

terms of dilatations, at least for some particular vec-

tors? In other words, do exist vectors which are

invariant under its action, up to a multiplicative fac-

tor? It is easy to check that the vectors

u1 ¼ 1ffiffiffi
2

p 1

1

� �
and u2 ¼ 1ffiffiffi

2
p 1

�1

� �
are indeed invariant, and therefore called eigenvec-
tors (also named as eigenfunctions, eigenstates, or

eigenmodes) of the matrix A: Au1 ¼ u1 and

Au2 ¼ ð1=2Þu2. These vectors are defined uniquely,

up to normalization constants. The associated multi-

plicative factors �1 ¼ 1 and �2 ¼ 1=2 are called

eigenvalues. Since any vector v can be decomposed

in a linear combination of the orthogonal vectors u1
and u2, the action of the matrix A to v is

Av ¼ ðu1 � vÞ�1u1 þ ðu2 � vÞ�2u2;

where the scalar products ðui � vÞ are projections of v
onto u1 and u2. The fundamental role of the eigen-

vectors u1 and u2 is to provide a natural basis, in

which the action of the matrix A is reduced to dilata-

tions (multiplication by a number).

The importance of such a spectral decomposition

is far beyond the provided geometric interpretation.

Since the action of a matrix in its own eigenbasis is

just dilatations, its k-th power acts as dilatations as well:

Akv ¼ ðu1 � vÞ�k
1u1 þ ðu2 � vÞ�k

2u2:

This is a way to build a general matrix analysis. For

instance, for a given function FðxÞ, one can define

the matrix FðAÞ by its action on a vector v:

FðAÞv ¼ ðu1 � vÞFð�1Þu1 þ ðu2 � vÞFð�2Þu2: [13]

We shall use this definition in what follows.

The Laplace Operator. The above spectral analysis

is not restricted to the two-dimensional case. The

very same concepts can be applied to finite-dimen-

sional matrices or even infinite-dimensional linear
operators acting on functions (instead of vectors)

from some functional spaces (instead of the plane).

This is the core of a mathematical formulation of
quantum mechanics (25). The analysis is technically

more delicate in infinite-dimensional spaces because

convergence issues have to be addressed. Once again,
the eigenfunctions, which remain invariant up to a

multiplicative factor under the action of a linear
operator, form a natural basis in the functional space.

In its own eigenbasis, the linear operator acts by

extending or shrinking the ‘‘directions’’ determined
by the eigenfunctions. So, if a given function is

decomposed in a linear combination of the eigen-
functions of a linear operator, this operator can be

applied individually to each term of the sum, yielding

another linear combination with easily computable
coefficients. But does any linear operator possess the

eigenfunctions? Are they complete so that any func-
tion can be decomposed? In general, the answers are

no. Fortunately, the Laplace operator in a bounded

domain with Dirichlet, Neumann, or Robin boundary
condition has a complete set of eigenfunctions. The

way how the Laplace operator acts is therefore fully
represented through its eigenfunctions and eigenvalues,

whatever the complexity of this action. In other words,

finding the eigenfunctions and eigenvalues is equivalent
to knowing the Laplace operator. It is thus not surpris-

ing that the computation of the eigenbasis is a difficult
task, but once this step is accomplished, any property

related to the operator can be investigated.

The Laplace operator is probably the most studied

operator as being a part of many differential equa-

tions describing various phenomena: diffusion and

heat transfer, wave propagation, free particle in quan-

tum mechanics, to name a few. The eigenfunctions

umðrÞ and eigenvalues �m are defined as

DumðrÞ þ �mumðrÞ ¼ 0 ðr 2 OÞ; [14a]

D
q
qn

umðrÞ þ KumðrÞ ¼ 0 ðr 2 qOÞ; [14b]

with an integer index m ¼ 0; 1; 2; . . .. Depending on

the application field (e.g., acoustics, quantum

mechanics, etc.), the interpretation of Laplacian

eigenfunctions is different.

Example: One-Dimensional Case. Let us consider

the unit interval: O ¼ ð0; 1Þ. In this one-dimensional

case, the Laplace operator is simply the second-order

spatial derivative, D ¼ q2=qx2. Evidently, umðxÞ ¼
sinðpmxÞ is an eigenfunction of this operator,

� q2

qx2
umðxÞ ¼ p2m2umðxÞ;
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satisfying the Dirichlet boundary condition:

umð0Þ ¼ umð1Þ ¼ 0. Note that ~umðxÞ ¼ cosðpmxÞ is

also an eigenfunction of the Laplace operator,

but with the Neumann boundary condition:

~u0mð0Þ ¼ ~u0mð1Þ ¼ 0, the prime denoting the spatial

derivative (Fig. 3). In both cases, the corresponding

eigenvalue �m is p2m2.

In acoustics, the functions fsinðpmxÞg are known

as vibration modes or stationary waves of a string of

length 1 with fixed end points. The square root of the

eigenvalue,
ffiffiffiffiffiffi
�m

p ¼ pm, is called the wavenumber

(or spatial frequency) giving the number of half-peri-

ods, p, of the wave. Furthermore, Fourier analysis

suggests to decompose a given initial profile of the

string into a linear combination of these stationary

waves in order to investigate its vibration. The very

same concept is applicable for any shape of vibrating

domain, when the Fourier harmonics are replaced by

the related Laplacian eigenfunctions.

In quantum mechanics, f ffiffiffi
2

p
sinðpmxÞg are the

wave functions of a particle restricted to the unit

interval by infinite potentials at x � 0 and x � 1.

When the particle is at state m, 2j sinðpmxÞj2 can be

interpreted as the probability to find this particle at

point x, while the eigenvalue �m is proportional to

the energy of this state. This interpretation remains

true for any confining domain V, when fumðrÞg are

the Laplacian eigenfunctions in this domain.

General Properties. The self-adjointness of the

Laplace operator (see Ref. (26) for definition and

details) implies that the eigenvalues �m are real, and

the eigenfunction umðrÞ are orthogonal:

Z
O

dr umðrÞ u�m0 ðrÞ ¼ dm;m0 ; [15]

where the asterisk denotes complex conjugate (note

that throughout this paper, we deal with real-valued

eigenfunctions, so that the asterisk can be omitted).

The above equation also explicitly fixes the normal-

ization and the dimensional units: the eigenfunctions

are measured in meter�d/2. We recall that the eigen-

values are measured in meter�2, independently of the

dimension d.
The possibility to decompose a given function into

a linear combination of the eigenfunctions is

expressed through the completeness relation

dðr� r0Þ ¼
X
m

umðrÞu�mðr0Þ: [16]

In fact, multiplying this relation by a function f ðr0Þ
and integrating it over r0 2 O yield the desired repre-

sentation:

f ðrÞ ¼
X
m

umðrÞ
Z
O

dr0 u�mðr0Þ f ðr0Þ
|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

cm

; [17]

the integrals providing the coefficients cm. This spec-
tral decomposition is an extension of classical Fou-

rier series to the functions which are defined on an

arbitrary bounded domain V. Moreover, the diffusive

propagator has a similar representation

Gtðr; r0Þ ¼
X
m

u�mðrÞumðr0Þe�D�mt: [18]

One can easily check that this sum satisfies the diffu-

sion equation [2], while the initial condition [4] at

t ¼ 0 is guaranteed by the completeness relation [16].

It is clear that the eigenfunctions and eigenvalues

explicitly determine the diffusive propagator. The

opposite is also true: the propagator can be formally

used to determine the eigenfunctions and eigen-

values. In fact, multiplying Eq. [18] by um0 ðrÞ and

integrating over r 2 O yield the following integral

Figure 3 Example of two first eigenfunctions of the

Laplace operator on the unit interval. The dimensionless

surface relaxivity h varies from 0 (Neumann boundary

condition, solid blue line) to infinity (Dirichlet boundary

condition, dashes red line). The successive intermediate

curves correspond to h taking values 1, 2, 4, 8, 16, 32,

64, and 128. [Color figure can be viewed in the online

issue, which is available at www.interscience.wiley.com.]
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equation for the eigenfunctions:Z
O

dr Gtðr; r0Þ um0 ðrÞ ¼ e�D�m0 t um0 ðr0Þ:

This is another confirmation that the diffusive

propagator contains all available information about

diffusive motion. In fact, the same amount of infor-

mation is ‘‘stored’’ differently in the eigenbasis and

in the propagator, the latter mixing this information

in a specific way (Fig. 4). Figuratively speaking, one

can store numerous sheets in various appropriate

boxes (eigenfunctions), or put them together in a

large single folder (propagator).

It is worth noting that the eigenvalues can be

expressed through the corresponding eigenfunctions

Figure 4 Illustration for the spectral decomposition of the diffusive propagator on the unit

interval. On the left, the first four terms of the spectral decomposition: the contribution of each

product umðxÞumðx0Þ of the eigenfunctions (here, cosine functions) is ‘‘weighted’’ by the

time-dependent factor e�D�mt (here, all the products are shown with the unit weights

corresponding to t ¼ 0). For small t (the first two plots on the right), the oscillating

character and large number of contributing eigenfunctions make the propagator to con-

centrate near the diagonal x ¼ x0 (in agreement with the limit Gtðx; x0Þ ! dðx� x0Þ as

t ! 0). For larger t, the highly oscillating eigenmodes become more and more attenu-

ated by their time-dependent weights. For instance, the third plot on the right shows

Gtðx; x0Þ for t ¼ 0:1 for which only the eigenmodes m ¼ 0 and m ¼ 1 still significantly

contribute. For t ¼ 1, the only contribution of the constant ground state m ¼ 0 with

�0 ¼ 0 remains significant. [Color figure can be viewed in the online issue, which is

available at www.interscience.wiley.com.]
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by multiplying Eq. [14a] by u�mðrÞ and integrating

over V

�m ¼
Z
O

dr jrumðrÞj2

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
bulk ‘‘kinetic energy’’

þ K

D

Z
qO

dr jumðrÞj2

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
surface ‘‘potential energy’’

(here we used the Green formula to integrate by parts

and Eq. [14b] to express the normal derivative of the

eigenfunction). In particular, this relation shows that

all eigenvalues are positive. In analogy with quantum

mechanics or acoustics, these terms can be respec-

tively interpreted as the bulk kinetic energy and the

potential energy which is localized in the surface

region (27).

III. MATRIX FORMALISM

As we already mentioned, Laplacian eigenfunctions

are the proper ‘‘letters’’ in a mathematical language

describing diffusive phenomena. It is difficult to

trace back their first use for this purpose. Robertson

applied a quantum-mechanical operator formalism

to study restricted diffusion in a slab geometry

between two parallel planes (28). This approach

was reformulated and further extended by Neuman

(29). The importance of the Laplacian eigenfunctions

was also recognized by Brownstein and Tarr in their

study of surface relaxation in a geometrical confine-

ment (30).
The Robertson’s approach can be considered as a

prototype for the efficient numerical techniques that

we describe in this Section. In fact, a numerical reso-

lution of the Bloch-Torrey equation [8] in a given do-

main is computationally time consuming for intense

gradients or long times. To overcome this problem,

Caprihan et al. proposed an original numerical

approach (31). The idea was to approximate a given

temporal gradient profile f(t) by a large sum of equi-

distant very narrow gradient pulses. The solution can

then be obtained by a successive use of the narrow-

pulse approximations. This so-called ‘‘multiple prop-

agator approach’’ was reformulated by Callaghan in

an elegant matrix form (32). He showed that the

macroscopic signal can be written within a matrix

formalism involving the Laplace operator eigen-

basis. In practice, the numerical problem of finding

the signal attenuation under an arbitrary temporal

gradient profile was reduced to symbolic manipula-

tion with two matrices which depend on several

physical parameters, and on the confining geome-

try. In further works, Callaghan and Codd studied

restricted diffusion in a cylinder and a sphere and

discussed the role of surface relaxation (33, 34).
Another formulation based on random walks was

given by Sukstanskii and Yablonskiy (35). Finally,
Barzykin proposed an equivalent matrix formalism

by considering a stepwise approximation of the

temporal gradient profile (36, 37). In his approach,

the two matrices determining the macroscopic signal

depend solely on the confining geometry. These

matrices have thus to be calculated only once for a

chosen confining medium (e.g., a sphere), after that

the computation of the signal is straightforward and

rapid for any set of physical parameters. This was an

important improvement of the above matrix techni-

ques and a crucial simplification for numerical analy-

sis. The numerical tool presented in this Section

essentially relies on the Barzykin’s stepwise gradient

approximation.

The different matrix approaches outlined earlier

were mainly intended for numerical computation of

the macroscopic signal. Axelrod and Sen developed a

systematic formalism for calculating the magnetiza-

tion of spins diffusing in a bounded region in the

presence of surface relaxation and general magnetic

field inhomogeneity (38). This approach was refor-

mulated, extended and used by the author as the

appropriate mathematical language for reviewing

vast literature on diffusive phenomena in NMR (1).
In this Section, we shall use the notations and con-

cepts following (1).

Exact Solution for Time-Independent
Magnetic Fields

The imaginary term with an inhomogeneous mag-
netic field in the Bloch-Torrey equation [8] is a sig-

nificant complication. In spite of this fact, many
results can still be deduced by considering the mag-

netic field as a ‘‘perturbation’’ of the Laplace opera-

tor. We first investigate the case when the applied
magnetic field is independent of time. The above

equation in dimensionless units is

T
q
qt

� ðDT=L2|fflfflffl{zfflfflffl}
p

ÞL2Dþ iðggTL|ffl{zffl}
q

ÞBðrÞ

0
B@

1
CAmðr; tÞ ¼ 0;

[19]

where BðrÞ is the normalized dimensionless spatial

profile of the applied magnetic field: BðrÞ ¼ ðe � rÞ=L
for a linear gradient in spatial direction e. One can

recognize the dimensionless parameters p and q in

front of the diffusive and encoding terms, respec-

tively.
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As in quantum mechanics, the eigenfunctions

umðrÞ of the ‘‘unperturbed Hamiltonian’’ (here, the

Laplace operator) serve as a basis to decompose the

solution of Eq. [19]:

mðr; tÞ ¼
X
m0

cm0 ðtÞum0 ðrÞ; [20]

with unknown time-dependent coefficients cm0 ðtÞ.
Substitution of this expansion in Eq. [19], multiplica-

tion by u�mðrÞ, and integration over V yield a set of

ordinary differential equations on the coefficients

cmðtÞ

T
qcmðtÞ
qt

þ
X
m0

p�m;m0 þ iqBm;m0
� �

cm0 ðtÞ ¼ 0; [21]

where the infinite-dimensional matrices L and

B represent the ‘‘unperturbed Hamiltonian’’ (the

Laplace operator) and the ‘‘perturbing interaction’’

(the magnetic field) in the eigenbasis of the Laplace

operator:

Bm;m0 ¼
Z
O

dr u�mðrÞ BðrÞ um0 ðrÞ; [22]

�m;m0 ¼ dm;m0�mL
2: [23]

Thinking of cmðtÞ as components of an infinite-

dimensional vector CðtÞ leads to a matrix first-order

differential equation

T
dCðtÞ
dt

¼ �ðp�þ iqBÞCðtÞ: [24]

As for a scalar equation, the solution is the matrix ex-

ponential (see below):ffiffiffiffi
V

p
CðtÞ ¼ Ue�ðp�þiqBÞt=T ; [25]

where a supplementary factor
ffiffiffiffi
V

p
is put to compen-

sate the dimensional unit, meter�d=2, of the vector

CðtÞ (V being the volume of the domain). Here the

matrix exponential e�ðp�þiqBÞt=T acts on the left on

the vector U representing the initial density rðrÞ in

the basis of eigenfunctions fumðrÞg:

Um ¼ V1=2

Z
O

dr u�mðrÞ rðrÞ: [26]

The macroscopic signal is then obtained according

to Eq. [9] by integrating the magnetization mðr; tÞ
over the whole confining domain V with a sampling

or pickup function ~rðrÞ of the measuring coil or

antenna:

E ¼
Z
O

dr mðr; tÞ ~rðrÞ

¼
X
m

cmðtÞV�1=2

Z
O

dr umðrÞ ~rðrÞ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

~Um

: [27]

The last sum can be interpreted as a scalar product

between the vector CðtÞ and the vector ~U represent-

ing the pickup function ~rðrÞ in the basis of the eigen-

functions fumðrÞg:

~Um ¼ V�1=2

Z
O

dr umðrÞ ~rðrÞ: [28]

The macroscopic signal at time t can thus be written

in a compact matrix form of a scalar product:

E ¼ �Ue�ðp�þiqBÞt=T ~U
�
: [29]

It is worth recalling that here and throughout this paper,

we use the convention for matrices to act on the left.

In summary, the Laplace operator and the mag-

netic-field term in the Bloch-Torrey equation [8]

were respectively considered as an unperturbed (free)

Hamiltonian and a perturbing interaction. From such

a quantum-mechanical point of view, the matrix B
corresponds to the representation of the perturbing

interaction in the basis of the free Hamiltonian (in

such a basis, the matrix L is necessarily diagonal).

The matrix e�ðp�þiqBÞt=T can thus be thought of as a

kind of evolution operator acting on the initial state

rðrÞ (represented by the vector U). The resulting

density mðr; tÞ is then weighted by the pickup or

sampling function ~rðrÞ (represented by vector ~U). It

is worth noting that the matrices B and L do not

commute.

We bring the reader’s attention to one important

point. Although the above derivation was performed

in the spirit of a quantum-mechanical perturbation

theory, the result [29] is exact, no simplifying

approximation has been involved. An approximation

will come later when the infinite-dimensional matri-

ces B and L will be truncated to finite sizes for prac-

tical implementation. We shall discuss these issues in

Sections ‘‘Numerical Implementation’’ and ‘‘Choice

of Truncation size’’.

Note: The matrix exponential eX can be defined

and calculated in several ways:

(1) One can use the Taylor series expansion of

the exponential function,
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eX ¼
X1
k¼0

Xk

k!
;

where a scalar is replaced by a matrix X. For
finite-dimensional matrices, this series always

converges. However, if the matrix X is infi-

nite-dimensional (as in our case), its powers

Xk may be infinite while the exponential

matrix eX can still exist.

(2) Alternatively, the matrix exponential can be

represented as the limit

eX ¼ lim
e!0

ðI þ eXÞ1=e;

where I stands for the identity matrix. This

relation is often used for computing the ma-

trix exponentials in practice.

(3) When the matrix X is diagonalizable, a

spectral definition like Eq. [13] is often the

most appropriate for theoretical and numeri-

cal purposes.

It is also worth noting that some classical proper-

ties of the exponential function are not applicable for

matrices. In particular, the most usual property

eXþY ¼ eXeY does not hold, unless the two matrices

X and Y commute: XY ¼ YX. For instance, the

matrices

X ¼ 1 0

0 0

� �
and Y ¼ 0 1

0 0

� �

do not commute, so that the three matrices

eXþY ¼ e e
0 1

� �
eXeY ¼ e e� 1

0 1

� �

eYeX ¼ e 1

0 1

� �
are distinct.

Piecewise-Constant Temporal Profiles

The compact matrix form [29] was derived for time-

independent magnetic fields that was crucial for solv-

ing the set of differential equations [21]. However,

the same approach can be applied in a much more

general situation when the temporal profile of the

magnetic field is a piecewise constant function. As

an example of practical importance, we consider

Stejskal-Tanner bipolar gradient pulses of rectangular

shape and duration d (Fig. 5). The first gradient pulse

starts at time t ¼ 0 and ceases at t ¼ d, while the sec-

Figure 5 Stejskal-Tanner two-pulse profile f ðtÞ and the matrices describing the evolution

of the magnetization on each subinterval with a constant gradient. This ‘‘matrix product

rule’’ can be applied for any piecewise-constant profile, the resulting expression being

composed of such elementary matrix blocks. Two vectors U and ~U determine the ini-

tial and final conditions.
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ond one starts and ceases at t ¼ T � d and t ¼ T,
respectively. The time interval ½0; T� is split in three

subintervals on which the gradient is constant: g on

½0; d�, 0 on ½d; T � d� (no gradient), and �g on

½T � d; T�. On each subinterval, the Bloch-Torrey

equation can be solved using the above matrix expo-

nential. To merge the solutions, the ending magnet-

ization of the subinterval k is used as an initial condi-

tion for solving the problem on the next subinterval

k þ 1. The use of the Laplacian eigenfunctions and

the consequent matrix representation is a particularly

efficient way to handle such successive computa-

tions. So, the magnetization after the first gradient

pulse (i.e., at the end of the first subinterval ½0; d�) is
determined by Eq. [25] with t ¼ d. The vector CðdÞ,
representing the magnetization mðr; dÞ in the eigen-

basis, is then used instead of U as the initial condi-

tion for the next subinterval ½d; T � d�. Because no

gradient is applied there (g ¼ 0 or q ¼ 0), the mag-

netization evolves in time according to the evolution

operator e�p�t=T with t ¼ T � 2d. At the end of this

subinterval, the magnetization is represented as

CðdÞe�p�ðT�2dÞ=T ¼ Ue�ðp�þiqBÞd=Te�p�ðT�2dÞ=T :

This vector is again used as the initial condition for

the last subinterval ½T � d; T�. The macroscopic sig-

nal at the echo time t ¼ T is then

E ¼ Ue�ðp�þiqBÞd=Te�p�ðT�2dÞ=Te�ðp��iqBÞd=T ~U
� �

;

[30]

the matrices being applied from the left to the right.

This ‘‘matrix product rule’’ can be applied for any

piecewise-constant temporal profile f(t) of the mag-

netic field. For example, for a CPMG sequence,

formed by repetition of the above two-pulse profile,

the amplitude of the nth echo is simply

En ¼ U e�ðp�þiqBÞd=Te�p�ðT�2dÞ=Te�ðp��iqBÞd=T
h in

~U
� �

:

[31]

A spectral analysis of the multiple echo attenuation

for CPMG sequences was developed in (39).
In general, if f ðtÞ ¼ fk on the interval ½tk; tkþ1� for

k ranging from 0 to K (with t0 ¼ 0 and tKþ1 ¼ T), the
macroscopic signal is

E ¼ U
YK
k¼0

e�ðp�þiqfkBÞðtkþ1�tkÞ=T
" #

~U

 !
: [32]

Here, as previously, one successively applies from

the left to the right the evolution operators

e�ðp�þiqfkBÞðtkþ1�tkÞ=T . We stress that this result is

exact, no approximation was involved. It is worth

recalling that the matrices B and L do not commute,

so that the product in Eq. [32] cannot be reduced to a

sum.

Arbitrary Temporal Profiles

This analysis can be applied to study complicated

sequences of gradient pulses for gradient-echo, spin-

echo, or stimulated spin-echo experiments. More-

over, because any function can be approximated by a

piecewise-constant function, the above relation

allows one to approximately compute the signal for

arbitrary temporal profile f(t). As illustrated in Fig.

2(b), the time interval ½0; T� is divided into a large

number K of subintervals of equal durations t ¼ 1=K
(in some cases, adaptive durations may be more effi-

cient). On the kth subinterval, the function f(t) is

approximated by a constant fk ¼ f ðktÞ. For this

piecewise-constant approximation, one can apply Eq.

[33] with tkþ1 � tk ¼ t

E ’ U
YK
k¼0

e�ðp�þiqfkBÞt=T
" #

~U

 !
: [33]

We shall illustrate how easily this technique can be

implemented in practice.

Relaxation Mechanisms

Up to this moment, we focused on the signal attenua-

tion due to incomplete rephasing of the diffusing

nuclei. In practice, however, various relaxation mech-

anisms may enhance the signal attenuation. For

instance, paramagnetic oxygen molecules in the lungs

lead to the bulk relaxation for MRI with hyperpolar-

ized gases, while the iron in hemoglobin of the blood

flowing through microcapillaries may cause surface

relaxation on the alveolar membranes. The theoretical

and numerical studies of these attenuation mecha-

nisms were mainly limited to a uniform distribution

of relaxing agents in the bulk or on the surface.

Bulk and Surface Relaxation. The case of uniform

bulk relaxation is particularly simple because any

diffusing particle can lose its magnetization with a

constant relaxation rate, independently of its position

and trajectory. In other words, uniform bulk relaxa-

tion affects all the particles in the same way. In prac-

tice, one usually compares the gradient-attenuated

signal to a reference signal (without applied gradi-

ent). Because the bulk relaxation mechanism is inde-

pendent of the gradient dephasing/rephasing, the ref-

erence signal is affected only by the former relaxa-
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tion mechanism, and its effect can be easily sub-

tracted.

A uniform surface relaxation is a more complex

attenuation mechanism because it affects only the

diffusing particles in a close vicinity of the surface.

Consequently, the relaxation of the diffusing particles

depends on their individual trajectories. In fact, a par-

ticle which is started near the boundary has more

chances to lose its magnetization than a particle

which is started far from the boundary, especially

when the diffusion time is short. For longer diffusion

times, this difference is getting reduced because all

the particles have enough time to explore the whole

confining domain and to experience more or less the

same relaxing interaction.

The usual way to include a uniform surface relaxa-

tion is to consider the Robin boundary condition [10]

for the magnetization and, consequently, for the

Laplace operator eigenfunctions. In particular, the

above matrix formalism is directly applicable in

the presence of uniform surface relaxation (1). But,
the obvious inconvenience of this approach is that the

eigenfunctions and eigenvalues depend on the dimen-

sionless surface relaxivity h in a complicated way

(see Fig. 3). To study the effect of surface relaxation,

one needs to recalculate these spectral characteristics

of the Laplace operator and the governing matrices

B and L for each value of the surface relaxivity.

Bearing in mind that the numerical computation of

the eigenfunctions is a time-consuming task, this

approach may appear less attractive than conven-

tional numerical schemes. In contrast to the explicit

dependence on the parameters p and q in Eqs. [29]

and [31–33], the implicit dependence on the dimen-

sionless surface relaxivity h can be considered a

drawback of this technique.

Alternative Insight. In a recent paper, we proposed

an alternative solution to this problem (40). The idea

is the following. Let us consider again the Bloch-

Torrey equation [19] and put the Neumann boundary

condition. In this equation, the last purely imaginary

term was responsible for dephasing of the nuclei. If

this term was real (with a coefficient k instead of iq),
it would correspond to a pure relaxation mechanism

with a given distribution k ~BðrÞ of the relaxation rates

in the bulk. The relaxed signal has the form [29]

where iqB is replaced by k~B, with

~Bm;m0 ¼
Z
O

dr u�mðrÞ ~BðrÞ um0 ðrÞ: [34]

The case of the uniform bulk relaxation corresponds

to ~BðrÞ ¼ 1, so that ~B is simply the identity matrix

due to the normalization [15]: ~Bm;m0 ¼ dm;m0 . Because

the identity matrix commutes to any matrix, the

contribution of the uniform bulk relaxation can be

factored out. In general, a nonuniform distribution
~BðrÞ can be used. In particular, if there is a specific

relaxing subregion A of the confining domain V, one

can take ~BðrÞ ¼ IAðrÞ, where I AðrÞ is the indicator

function of this subregion: I AðrÞ ¼ 1 for r 2 A, and
0 otherwise.

Alternative Implementation of Uniform Surface
Relaxation. In the case of uniform surface relaxa-

tion, a nucleus can lose its magnetization after hitting

the boundary. This situation can be implemented via

a distribution ~BðrÞ localized near the boundary, e.g.,
~BðrÞ ¼ I qOeðrÞ=e, where qOe is an e-vicinity of the

boundary: qOe ¼ fr 2 O : jr� qOj � eg (see Fig.

6). In the limit e going to 0, the volume integral over

qOe in Eq. [34] is reduced to the boundary integral:

~Bs
m;m0 ¼

Z
qO

dr u�mðrÞ um0 ðrÞ: [35]

The parameter k is simply the product

ph ¼ KT=L. It is worth noting that both parameters p
and h depend on the diffusion coefficient D, while
the product does not. A nonuniform distribution of

the relaxing agents on the boundary could be directly

incorporated in this formula. Note that ~Bs is not an

identity matrix (as it was for uniform bulk relaxation)

because the normalization condition [15] says noth-

ing about the boundary values of the eigenfunctions.

Because the mechanisms of gradient encoding and

of bulk and surface relaxations are independent, their

effects are simply superimposed as a linear combina-

tion of the corresponding terms in the Bloch-Torrey

equation. Consequently, the above mentioned expres-

Figure 6 An e-vicinity qOe of the boundary qO of a

confining domain V is constituted of the points in

V within the distance to the boundary smaller than

e. The e-vicinity is introduced to account for the

spins approaching to the boundary close enough to

be affected by surface relaxation.
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sions for the signal can be easily modified to include

different attenuation mechanisms. For instance, Eq.

[29] for the FID signal in the presence of surface

relaxation becomes

E ¼ Ue�ðp�þiqBþph~BsÞt=T ~U
� �

:

The advantage of this relation is the explicit de-

pendence on all three physical parameters p, q, and h.
The structure of each term has a clear physical inter-

pretation: p� describes restricted diffusion, iqB rep-

resents the dephasing, and ph~Bs accounts for surface

relaxation. Similarly, the formula [30] for the signal

attenuation by bipolar gradient shown in Fig. 5 takes

the form

E ¼
�
Ue�ðp�þiqBþph~BsÞd=Te�ðp�þph~BsÞðT�2dÞ=T

e�ðp��iqBþph~BsÞd=T ~U
�
:

Since surface relaxation is present during the

whole experiment (from the 908 rf pulse at t ¼ 0 up

to the echo time t ¼ T), the matrix ~Bs is included in

each exponential. One can also extend Eqs. [31] and

[32] for the CPMG sequence or any temporal profile.

A nonuniform bulk relaxation can be similarly incor-

porated.

It is crucial to stress that here the eigenvalues and

eigenfunctions are defined for the Neumann bound-
ary condition, whatever the value of surface relaxiv-

ity. As a consequence, these eigenfunctions, as well

as the governing matrices L, B, and ~Bs, depend only

on the confining geometry and have to be constructed

only once for a given confinement. The matrix ~Bs is

an alternative way to introduce a uniform surface

relaxation. Moreover, it is a general frame for dealing

with a nonuniform distribution ~BðrÞ of the relaxation

rates, either in the bulk, or on the boundary. In this

case, the matrix ~B would obviously depend on this

distribution (as the matrix B depends on the spatial

profile of the magnetic field). This concept is easily

extendable for a superposition of various attenuation

mechanisms. For instance, one can study the com-

bined effect of the surface and bulk relaxations, gra-

dient encoding, presence of dipolar magnetic field,

etc.

Numerical Implementation

The practical efficiency of this numerical technique

is based upon an unbounded increase of the eigenval-

ues �m with m: the matrix L standing in the argument

of the exponential function allows one to truncate the

infinite-dimensional matrices L, B, and ~Bs to moder-

ate sizes. A very rough estimate of the truncation size

M could be given by the inequality

p�M 	 q; [36]

when ‘‘damping’’ real part p� of the exponential

function in Eq. [29] or similar expressions dominates

its ‘‘oscillating’’ imaginary part iqB. Consequently,
the matrices L and B can be truncated to smaller

sizes for smaller q and larger p. We shall return to

this question in Section ‘‘Choice of the Truncation

Size’’.

The presented matrix formalism is a general math-

ematical frame for computing the signal attenuation

because of restricted diffusion. On the basis of the

Laplacian eigenfunctions, this approach can in prin-

ciple be applied for any (bounded) geometrical con-

finement. In the next Section, we illustrate how this

technique is implemented for rotation-invariant

domains for which the matrices L, B, and ~Bs are ex-

plicitly known (1). When the geometry of the confin-

ing domain V is more complex, one needs first to

compute the eigenbasis of the Laplace operator in

order to build the governing matrices. This is the

most difficult and time-consuming step, but this com-

putation should be performed only once for a given

geometry. This is the crucial advantage of this nu-

merical technique in comparison to conventional

simulation schemes. When the preliminary construc-

tion of the governing matrices is done, the computa-

tion of the macroscopic signal for any set of physical

parameters (free diffusion coefficient, gradient inten-

sity, size of the confining domain, echo time) and

any temporal profile f(t) is straightforward, accurate,
and rapid.

IV. PRACTICAL IMPLEMENTATION FOR
SIMPLE DOMAINS

In this Section, we illustrate how the numerical tool

described in this article works for three simple

domains: an interval, a disk, and a sphere. In these

geometries, the Laplace operator eigenbasis is known

analytically. For this reason, these three domains are

often considered as ‘‘model geometries,’’ on which

various aspects of restricted diffusion can be thor-

oughly investigated. In fact, almost every quantity of

interest can be computed analytically in this case (1,
41). Note that analytical computations can also be

performed for circular and spherical layers or shells

(42). The computational code has been implemented

by the author as a set of Matlab functions which are

freely available on the web (43).
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The Unit Interval

Eigenfunctions. We first consider restricted diffu-

sion on the unit interval. In this case, a general form

of a real-valued function satisfying Eq. [14a] is

uðxÞ ¼ c1 cosðaxÞ þ c2 sinðaxÞ;

where a, c1, and c2 are the three real numbers to be

fixed by Eqs. [14b] and [15]. In fact, this function

remains unchanged under the action of the Laplace

operator D ¼ d2=dx2, up to a multiplicative factor a2

which can be recognized as the eigenvalue.

As shown in Section ‘‘Relaxation Mechanisms’’,

the effect of surface relaxation can be incorporated

by adding the matrix ~Bs. This ‘‘trick’’ allows us to

focus on the Neumann boundary condition instead of

a more general Robin boundary condition [14b]. The

boundary of the unit interval is constituted of two

end-points x ¼ 0 and x ¼ 1. The normal derivative

q=qn is simply �d=dx at x ¼ 0 and þd=dx at x ¼ 1.

The sign is different since the normal derivative is

directed outwards the domain (Fig. 7). The Neumann

boundary condition simply states that

u0ð0Þ ¼ 0; u0ð1Þ ¼ 0:

The first equation implies that the coefficient c2
must be zero, while the second equation, sinðaÞ ¼ 0,

determines a. This equation has an infinite set of

nonnegative solutions: am ¼ pm, where m is a non-

negative integer index: m ¼ 0; 1; 2; . . .. The last

remaining coefficient c1 can be fixed by choosing the

normalization [15]. The resulting eigenfunctions and

eigenvalues are

umðxÞ ¼ em cosðpmxÞ; �m ¼ p2m2; [37]

where em are normalization constants: em ¼ ffiffiffi
2

p
for

m > 0, and e0 ¼ 1.

It is worth noting that the analysis for Robin

boundary condition would be in fact very similar. In
this case, the eigenfunctions would be linear combi-

nations of sine and cosine functions, but the equation
for a would be more complicated:

2ha cosðaÞ ¼ ða2 � h2Þ sinðaÞ:

When h > 0, there is no explicit form for a so that

one would need to solve this equation numerically.

Although this is a simple task in numerical analysis,

this computation would have to be repeated for each

value of h. Figure 3 illustrates how the corresponding

eigenfunctions vary with h. But, it is more appropri-

ate, conceptually and numerically, to have the eigen-

basis which depends only on the geometry, and not

on physical parameters like h. For this reason, we

consider the Laplacian eigenbasis for the Neumann

boundary condition as the unique geometry-depend-

ent basis.

Figure 7 Three domains, for which the Laplacian eigenfunctions are known analytically: an

interval (1D), a disk (2D), and a sphere (3D). The results for the interval and the disk are

directly applicable for restricted diffusion in a slab (two parallel planes) and a cylinder, when

the gradient is applied perpendicular to the planes or to the cylinder axis.
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The Governing Matrices. Once the Laplacian

eigenfunctions are found, the construction of the mat-

rices L, B, and ~Bs is straightforward. In fact, L is

simply a diagonal matrix constituted of the eigenval-

ues �m ¼ p2m2. The matrix B depends on the choice

of the spatial profile of the magnetic field. For a lin-

ear magnetic field gradient, the dimensionless spatial

profile is BðxÞ ¼ x, for which (36, 37):

Bm;m0 ¼ emem0

Z1
0

dx cosðpmxÞ x cosðpm0xÞ:

This integral is easy to calculate (see Table 1).

The elements of the matrix ~Bs determining the effect

of surface relaxation are found similarly. The explicit

formulas allow one to construct easily the matrices

L, B and ~Bs of any required size (the effect of trunca-

tion size is discussed in Section ‘‘Choice of the Trun-

cation Size’’). Note also that, if the initial density

rðxÞ and sampling function ~rðxÞ are uniform, one has

Um ¼ ~Um ¼ dm;0 because the ground eigenfunction

u0ðxÞ is constant for the Neumann boundary condi-

tion (otherwise, the only remaining computation

would be the integration of rðxÞ and ~rðxÞ with cosine

functions according to Eqs. [26] and [28]). We have

therefore all the ‘‘ingredients’’ needed to calculate

the signal. We conclude that the problem of finding

the signal attenuation due to restricted diffusion on

the unit interval is fully solved for any set of parame-

ters p, q, and h and any temporal profile. From a

practical point of view, this technique is much sim-

pler than other matrix formalisms (31–35) because

the governing matrices do not depend on physical

parameters.

General Observations. Figure 8 illustrates generic

features in the behavior of the macroscopic signal.

We consider restricted diffusion of the nuclei on the

unit interval (in a slab). A bipolar gradient (with two

rectangular pulses of duration d ¼ T=2) is applied so

that the temporal profile f(t) is simply 1 for

0 < t < T=2 and �1 for T=2 < t < T (this is also

equivalent to a spin-echo experiment in a constant

gradient with the 1808 rf pulse at time T/2). The sig-

nal as a function of the dimensionless gradient inten-

sity q is calculated by Eq. [30] with d ¼ T=2. For
sake of simplicity, the surface relaxation h is set to 0.

The dimensionless diffusion coefficient p takes three

values, representative of different diffusion regimes.

First, one can observe a parabolic shape for all the

curves at small q values. This is the usual quadratic

dependence of logE on the gradient intensity, which

is a reminiscent feature of free diffusion (cf. Eq.

[11]). For larger q, the presence of a geometrical con-

finement becomes significant, failing the Gaussian

behavior. For slow diffusion (p ¼ 0:1), the nuclei in

the bulk far from the boundary are almost not re-

stricted, so that one can formally apply Eq. [11] to

show that their contribution to the signal is negligible

at large gradients. The signal is then formed by the

nuclei near the boundary which are more restricted

and thus less dephased. This is known as the localiza-

tion regime for which log E behaves asymptotically

as q2=3 (47–49). For the intermediate regime (p ¼ 1),

one can notice a kind of oscillatory behavior,

although the temporal profile used is far from conven-

tional narrow pulses and the underlying diffraction

patterns (50–54). Finally, for p ¼ 10, the nuclei move

rapidly enough to experience the dephasing by differ-

ent gradients over the sample so that the net dephasing

is somehow motionally averaged (28, 29). These and

other theoretical issues were discussed at length in (1)
and will be illustrated in a companion paper (2).

Disk and Sphere

Many analytical results can also be derived for a disk

and a sphere. The rotation invariance of these

Figure 8 The signal at the echo time t ¼ T attenuated

in a bipolar gradient due to restricted diffusion on

the unit interval (a slab). The signal is plotted as a

function of the dimensionless gradient intensity

q ¼ ggTL for three values of the dimensionless dif-

fusion coefficient p ¼ DT=L2. The surface relaxivity

h is set to 0. The curves computed with two trunca-

tion sizes, M ¼ 10 and M ¼ 100, are visually indis-

tinguishable (the maximum relative errors at q ¼
100 are 0:2%, 0:01%, and 0:0007% for p values

0.1, 1, and 10, respectively). This observation justi-

fies the use of relatively small matrices for this

range of physical parameters. [Color figure can be

viewed in the online issue, which is available at

www.interscience.wiley.com.]
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domains allows one to rewrite Eqs. [14a] and [14b]

in polar or spherical coordinates, when the radial and

angular variables become separated (44–46). As

earlier, Eq. [14a] determines a general analytical

representation of the eigenfunctions, while Eq. [14b]

‘‘chooses’’ the appropriate form. For the unit disk

(L ¼ 1), one gets (1)

unkðr;jÞ ¼ enffiffiffi
p

p bnk
JnðankÞ

� �
JnðankrÞ cosðnjÞ; [38]

where the factor in parentheses is a normalization

constant (the coefficients bnk are given in Table 1),

JnðzÞ the Bessel functions of the first kind, and ank

all the nonnegative solutions of the equations

J0nðankÞ ¼ 0 ðn ¼ 0; 1; 2; 3 . . .Þ; [39]

representing the Neumann boundary condition. In

particular, these solutions determine the eigenvalues:

�nk ¼ a2
nk.

There are many apparent differences with respect

to the case of the unit interval:

(1) The radial dependence is determined by

‘‘special’’ Bessel functions instead of ‘‘elemen-

tary’’ cosine functions in Eq. [37]. However,

the classical distinction between ‘‘special’’ and

‘‘elementary’’ functions is elusive and artificial:

Bessel functions are as well studied and under-

stood as cosine functions (55);
(2) The single equation sinðaÞ ¼ 0 for the unit

interval is now replaced by a sequence of

equations [39] enumerated by the nonnega-

tive index n ¼ 0; 1; 2; 3 . . .. In turn, each of

these equations has an infinite set of nonneg-

ative solutions ank, enumerated by the non-

negative index k ¼ 0; 1; 2; 3 . . .. For this rea-

son, we use a double index nk to distinguish

different equations (index n) and different

solutions (index k). But this double index

plays exactly the same role as the single

index m for the unit interval. In fact, if all

the solutions of all the equations [39] are

sorted in ascending order, the position of the

solution ank can serve as a single index m:

k 0 1 2 � � �
a0k 0:000 3:832 7:016 � � �
a1k 1:841 5:331 8:536 � � �
a2k 3:054 6:706 9:970 � � �
a3k 4:201 8:015 11:35 � � �
� � � � � � � � � � � � � � �)

ðnkÞ 00 10 20 01 � � �
a 0:000 1:841 3:054 3:832 � � �
ðmÞ 0 1 2 3 � � �
It is clear that the enumeration of the eigen-

values and eigenfunctions can be equiva-

lently performed either by the double index

nk, or by the single index m. In what fol-

lows, we prefer to keep using the double

index as a useful notation. For instance, the

elements of the matrix L will be written as

�nk;n0k0 instead of �m;m0 . We hope that such

double-index notation does not lead to a con-

fusion (in particular, �nk;n0k0 has nothing

to do with a fourth rank tensor).

(3) There is no explicit formula for the solutions

ank of Eq. [39], so that these equations have

to be solved numerically. This is a simple

task in numerical analysis. Moreover, these

solutions have to be found only once so that

this preliminary step does not complicate

further computation of the signal. Table 2

contains the first twenty positive solutions in

ascending order which are sufficient for

many practical purposes.

The knowledge of the eigenfunctions allows one

to construct the governing matrices L, B, and ~Bs.

However, the computation of the matrix B for a lin-

ear magnetic field gradient BðrÞ ¼ r cosj requires

Table 2 First 20 Positive Solutions of Eq. [39] and [40] in Ascending Order that Determine the Eigenvalues of
the Laplace Operator with the Neumann Boundary Condition in the Unit Disk and the Unit Sphere

Disk 1.841184 a10 3.054237 a20 3.831706 a01 4.201189 a30 5.317553 a40

5.331443 a11 6.415616 a50 6.706133 a21 7.015587 a02 7.501266 a60

8.015237 a31 8.536316 a12 8.577836 a70 9.282396 a41 9.647422 a80

9.969468 a22 10.17347 a03 10.51986 a51 10.71143 a90 11.34592 a32

Sphere 2.081576 a10 3.342094 a20 4.493409 a01 4.514100 a30 5.646704 a40

5.940370 a11 6.756456 a50 7.289932 a21 7.725252 a02 7.851078 a60

8.583755 a31 8.934839 a70 9.205840 a12 9.840446 a41 10.01037 a80

10.61386 a22 10.90412 a03 11.07021 a51 11.07942 a90 11.97273 a32

The smallest solution a00 ¼ 0 is not shown.
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sophisticated integration with Bessel functions. The

explicit formulas for its elements, which were

recently obtained in (1, 43), are reproduced for the

Neumann boundary condition in Table 1. In sum-

mary, the original problem of finding the signal

attenuation due to restricted diffusion is fully reduced

to the numerical computation of the nonnegative sol-

utions of Eq. [39].

A similar analysis is carried out for the unit sphere,

for which the eigenfunctions can be written as

unklðr; y;jÞ ¼ bnkffiffiffiffiffiffi
2p

p
jnðankÞ

 !
jnðankrÞPnðcos yÞeilj;

where the factor in parentheses is a normalization

constant (the coefficients bnk are given in Table 1),

jnðzÞ the spherical Bessel functions of the first kind,

jnðzÞ ¼
ffiffiffi
p
2z

p
Jnþ1=2ðzÞ, and ank all the nonnegative

solutions of the equations

j0nðankÞ ¼ 0 ðn ¼ 0; 1; 2; 3:::Þ; [40]

representing the Neumann boundary condition. In

particular, these solutions determine the eigenvalues:

�nk ¼ a2
nk. Note that for a linear magnetic field gradi-

ent BðrÞ ¼ r cos y, there is no dependence on j, so
that the third index l of the eigenfunctions is irrele-

vant, and it can be omitted. Table 1 summarizes the

main formulas required to construct the matrices L,
B, and ~Bs. As earlier, the computation is reduced to

finding the solutions of Eq. [40]. Its first 20 positive

solutions in ascending order are tabulated in Table 2.

Choice of the Truncation Size

The choice of the appropriate values for numerical

parameters is a compromise between accuracy and

rapidity. For the matrix technique, the crucial

parameter to choose is the truncation size M of the

governing matrices. In fact, the set of Laplacian

eigenfunctions is infinite, and each of them contrib-

utes to the signal. Consequently, the compact form

[29] or similar expressions are exact only when the

governing matrices are infinite-dimensional. Even for

the unit interval, for which the elements of these mat-

rices are known explicitly, the practical computation

requires a truncation to finite sizes, being thus a

source of computational errors.

There is no universal criterion for choosing the

truncation size M. At the same time, one can follow a

simple empirical principle that the obtained results

should not (almost) change when M is further

increased. In practice, it is advised to calculate the

signal twice, by using the matrices truncated to a size

M and to a larger size M0. The difference between

two results indicates the order of truncation error.

This principle is illustrated in Fig. 8. The three

curves, obtained by using the governing matrices B
and L truncated to M ¼ 10 and M0 ¼ 100, are visu-

ally indistinguishable. The corresponding relative

errors are maximum at q ¼ 100, their values being

0:2%, 0:01%, and 0:0007% for p values 0.1, 1, and

10, respectively. This observation is in agreement

with our previous reasoning: for smaller p and larger

q, the term iqB in Eq. [30] is a stronger perturbation

of p�, and the accuracy of truncation is poorer (but

still excellent!). The fact that smaller p values require

larger number of Laplacian eigenfunctions can also

be seen from the spectral decomposition [18] for the

diffusive propagator. Note that the tenfold value of

M0 is willingly exaggerated, a smaller value M0 ¼ 20

would be sufficient to check the accuracy in this par-

ticular case. This remarkably good accuracy should

not be surprising because a substantial part of com-

putations had been performed analytically (exact for-

mulas for the matrix B).
Although Fig. 8 justifies the use of small govern-

ing matrices in the considered example (the trunca-

tion size M ¼ 10 was sufficient), this observation

should not be blindly extended to any cases. As we

already stated, the choice of the truncation size is an

important step, and one has to check the accuracy in

each particular situation. Let us mention at least two

reasons which may require the use of (much) larger

governing matrices.

Slower Increase of the Eigenvalues with Their
Order Index m. According to Eq. [36], the accu-

racy of computation depends on whether the eigen-

value �M is small or large with respect to p and q.
The choice of this value implies in turn the choice of

the truncation size M. For the unit interval, the eigen-

values are simply related to their order index:

�m ¼ p2M2. In general, one can use the Weyl asymp-

totic law stating that �m / M2=d in an embedding

space of d dimensions (56). This means that in order

to attain the chosen value �M (determining the accu-

racy), one needs to calculate M / �
d=2
M eigenmodes.

In practice, the computation would require larger

matrices in higher dimensions. The analysis for the

unit interval is therefore the simplest case. The com-

putation for the disk (d ¼ 2) is more time consuming

because the eigenvalues grow only linearly with M,

as one can notice from Table 2. For instance, the

twentieth positive eigenvalue �32 ¼ a2
32 
 128:73 is

much smaller than the twentieth positive eigenvalue

p2202 
 3947:84 for the unit interval. When the
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required truncation size is not accessible, other meth-

ods can be used to improve the accuracy, e.g., an

extrapolation of the signal as a function of the trunca-

tion size M for M going to infinity.

The computation would require still larger matri-

ces in three dimensions. Note that the unit sphere is

not representative because the eigenmodes in this

exceptional case are degenerate so that the eigenval-

ues grow linearly with M, as for the disk. This degen-

eracy is related to rotation invariance of the sphere

and will be broken for other three-dimensional

shapes. Further discussion of this issue is beyond the

scope of this paper.

In spite of these precautions, we emphasize that

the matrix technique remains a very powerful numer-

ical tool in two and three dimensions. In particular,

its use for computing the signal in a disk and a sphere

is much faster and more accurate than by using con-

ventional Monte Carlo simulations.

Introduction of Surface Relaxation via Matrix
~Bs. From our practical experience, the choice of the

truncation size considerably depends on the dimen-

sionless surface relaxation h. For the same accuracy,

the computation for larger h requires larger matrices.

In fact, the effect of truncation is much more pro-

nounced for the matrix ~Bs than for the matrix B. This
is not surprising: from Table 1, the nonzero elements

of the matrix ~Bs are of the same order of magnitude,

while the elements of the matrix B progressively

decrease with jm� m0j (when one moves away from

the diagonal). Qualitatively, the matrix ~Bs is a

‘‘stronger’’ perturbation of the matrix L. If L was infi-

nite-dimensional, this effect would be irrelevant. In

practice, larger finite-dimensional matrices are needed

to diminish this effect. When the surface relaxation is

very high (in particular, in the limit of the Dirichlet

boundary condition when h ¼ 1), the use of the ma-

trix ~Bs is not appropriate. In this case, one can still

apply the matrix technique, but the computation of

Laplacian eigenfunctions with Robin (or Dirichlet)

boundary condition is preferred. The corresponding

explicit formulas for computing the matrices L and B
for the interval, disk, and sphere are given in (1). On
the other hand, it is worth noting that very high sur-

face relaxivity is not typical for NMR applications.

The formulas presented in this paper are therefore ap-

plicable for most cases of practical interest. A system-

atic study of these issues would be helpful.

Temporal Profiles and Time Step

Except for particular situations (e.g., bipolar gradient

pulses of rectangular shape shown in Fig. 5), a given

temporal profile f(t) has to be approximated by a

piecewise-constant function as illustrated in Fig. 2b.

In this case, the discretization time step t is another

numerical parameter to choose. Once again, it is dif-

ficult to provide a universal recipe for this choice.

Naturally, t should be small as compared to relevant

time scales of the temporal profile f(t) (in particular,

the ramp time and plateau duration for trapezoidal

pulses). As for the truncation size, it is advised to

make discretizations with two time steps t and t0,
and to check for the obtained results to be close

enough. As an example, we consider restricted diffu-

sion on the unit interval and calculate the signal for

different discretizations of the cosine profile

f ðtÞ ¼ cosðpt=TÞ. For p ¼ q ¼ 1, h ¼ 0, and M ¼ 50,

we empirically obtained jEt � Et¼0j � 0:8ðt=TÞ2,
where Et is the signal computed for the time step t,
and Et¼0 its interpolated value at t ¼ 0. A moderate

choice t=T ¼ 0:01 ensures an accuracy of order of

10�4 for this profile.

Computational Efficiency

Up to this moment, we addressed the accuracy of the

matrix technique which has been shown to be

remarkably good. Let us now briefly discuss its coun-

terpart, the computational time (CPU). We are not

intended to provide here neither extensive analysis

for this characteristics, nor its careful comparison to

other computational schemes such as Monte Carlo

simulations or finite difference method. Although the

computational time may depend on various parame-

ters, we focus on the truncation size M and discreti-

zation time step t.
Manipulations with matrices (e.g., inversion, find-

ing eigenvectors, etc.) often require OðM3Þ opera-

tions so that the CPU is expected to grow as M3. This

behavior has been empirically checked for restricted

diffusion on the unit interval with a simple bipolar

gradient profile. The CPU for computing the signal at

one point (a fixed set of p, q, and h values) on a home

laptop computer (Intel processor 1.73 GHz) was of

the order of 3 � 10�7M3 s. Even for large 200 � 200

matrices, this computation takes only few seconds,

and this characteristics can still be substantially

improved by optimizing the matrix operations. Given

that for the unit interval the accuracy was shown to

be high even for M ¼ 20, the matrix technique is

superior with respect to conventional simulation

schemes, at least for simple confining domains.

When the temporal profile f(t) has to be approxi-

mated by a piecewise-constant function, the signal is

computed by matrix multiplication in Eq. [33]. The

computational time is expected to grow linearly with
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the number of factors in this product which is propor-

tional to T=t. This behavior has been empirically

checked for restricted diffusion on the unit interval.

For p ¼ q ¼ 1, h ¼ 0, M ¼ 50, and the cosine tempo-

ral profile, we obtained that CPU was approximately

0:014ðT=tÞ þ 0:42 s. Even for t ¼ 0:01T, the com-

putation takes only few seconds, while the accuracy

was shown to be better than 10�4. Note also that the

truncation size M could be reduced to get still faster

computation.

In summary, the matrix technique turns out to be a

powerful numerical tool to get very accurate results

in a short computational time. For simple confining

domains (slab, cylinder, and sphere), this technique

is easy to implement, and it is highly recommended

instead of using conventional simulation schemes

(such as Monte Carlo simulations, finite difference or

finite element methods).

V. CONCLUSION

It is quite surprising that matrix-like formalisms

appeared in NMR literature only a decade ago. After

all, the idea of using Laplacian eigenfunctions as nat-

ural ‘‘bricks’’ to build a theoretical basic for restricted

diffusion is old and genuine. A compact expression

[29] for the signal is merely a representation of the

Bloch-Torrey equation in the Laplace operator eigen-

basis. Moreover, this spectral description led us to an

efficient numerical tool which is not being broadly

employed yet. This is a simple tool, both from con-

ceptual and numerical points of view. Each attenua-

tion mechanism is represented by its own matrix

depending only on the geometry of the confinement.

In turn, the ‘‘strength’’ of each mechanism is deter-

mined by the corresponding physical parameter. In

this way, the roles of physics and the geometry are

somehow separated. Once the governing matrices are

constructed for a given confinement, the computation

of the signal for any (reasonable) set of physical pa-

rameters is easy, rapid, and accurate.

The matrix formalism involving Laplacian eigen-

functions is a general and well-adapted mathematical

language to tackle various problems of restricted dif-

fusion in NMR, at both theoretical and numerical

levels. This language is very flexible and easily ex-

tendable. In particular, one can implement any spatial

profile of the magnetic field, not only a linear gradi-

ent considered here. This implementation only

requires to recalculate the matrix B with a given

function BðrÞ according to Eq. [22]. For instance, re-

stricted diffusion in a parabolic magnetic field was

investigated in (1), while the choice of the cosine

magnetic field in a slab geometry led to a particularly

simple structure of the matrix B (57). The effect of

internal gradients due to magnetic susceptibility dif-

ference can also be analyzed [its relation to Lapla-

cian eigenfunctions was explored by Song and co-

workers (58–62)]. Similarly, nonuniform surface or

bulk relaxation mechanisms can be directly incorpo-

rated via the matrices ~Bs and ~B.
The computational problem is reduced to finding

Laplacian eigenfunctions. For the unit interval and

rotation-invariant domains (disk and sphere, as well

as circular and spherical layers), for which the Lap-

lace operator eigenbasis is known analytically, the

matrix technique is definitely more accurate and

much faster than conventional schemes such as

Monte Carlo simulations. In sharp contrast with the

conventional schemes, the computational time

weakly depends on physical parameters, allowing for

long-time or high-gradient analysis. For complex

geometries, finding Laplacian eigenfunctions is a

difficult but classical task in numerical analysis.

Studying restricted diffusion via the Laplacian eigen-

functions in some model geometries (such as hier-

archical morphologies, self-similar fractals, ordered

or random packs of spherical beads, etc.) is a promis-

ing perspective for future research. In particular, the

roles of multiple length scales, branching or intercon-

nected morphologies, roughness of the boundary and

many other geometrical features are intriguing from

the theoretical point of view and crucial for practical

implementations, ranging from oil recovery to medi-

cal applications.
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